Select date

May 2024
Mon Tue Wed Thu Fri Sat Sun

Stephen C. Meyer, Douglas Axe, Chuck Darwin, and Me, by Fred Reed

7-10-2020 < UNZ 41 7929 words
 

This is a much-updated version of a previous column on evolution, is atrociously long, criminally even, by internet standards but I post it anyway because I get occasional requests. Few will read it, which is understandable. Apologies. The Devil made me do it. I will get transcendently stupid email saying that I am a snake-handling primitive Christian in North Carolina with three teeth. Actually, I do believe that all humans descend from one man and woman (Deucalion and Pyrrha).



The Bugs in Darwin


“A scientist is part of what the Polish philosopher of science Ludwik Fleck called a “thought collective”: a group of people exchanging ideas in a mutually comprehensible idiom. The group, suggested Fleck, inevitably develops a mind of its own, as the individuals in it converge on a way of communicating, thinking and feeling.


This makes scientific inquiry prone to the eternal rules of human social life: deference to the charismatic, herding towards majority opinion, punishment for deviance, and intense discomfort with admitting to error. Of course, such tendencies are precisely what the scientific method was invented to correct for, and over the long run, it does a good job of it. In the long run, however, we’re all dead, quite possibly sooner than we would be if we hadn’t been following a diet based on poor advice.”



How This Essay Came About


I was in high school when I began to think about evolution. I was then just discovering the sciences systematically, and took them as what they offered themselves to be, a realm of reason and dispassionate regard for truth. There was a hard-edged clarity to them that I liked. You got real answers. Since evolution depended on such sciences as chemistry, I regarded it as also being a science.


The question of the origin of life interested me. The evolutionary explanations that I encountered in textbooks of biology seemed weak, however. They ran to, “In primeval seas, evaporation concentrated dissolved compounds in a pore in a rock, a membrane formed, and life began its immense journey.” Still, I saw no reason to doubt this. If it hadn’t been true, scientists would not have said that it was.


Remember, I was fifteen.


In those days I read Scientific American and New Scientist, the latter then still being thoughtfully written in good English. I noticed that not infrequently they offered differing speculations as to the origin of life. The belief in the instrumentality of chemical accident was constant, but the nature of the primeval soup changed to fit varying attempts at explanation.


For a while, life was thought to have come about on clay in shallow water in seas of a particular composition, later in tidal pools with another chemical solution, then in the open ocean in another solution. This continues. Recently, geothermal vents have been offered as the home of the first life. Today (Feb 24, 2005) on the BBC website, I learn that life evolved below the oceanic floor. (“There is evidence that life evolved in the deep sediments,” co-author John Parkes, of Cardiff University, UK, told the BBC News website.”)


The frequent shifting of ground bothered me. If we knew how life began, why did we have so many prospective mechanisms, none of which worked? Evolution began to look like a theory in search of a soup. Fifty-five years later in 2015, it still does.



What Distinguishes Evolution from Other Sciences


Early on, I noticed three things about evolution that differentiated it from other sciences (or, I could almost say, from science). First, plausibility was accepted as being equivalent to evidence. And of course the less you know, the greater the number of things that are plausible, because there are fewer facts to get in the way. Again and again evolutionists assumed that suggesting how something might have happened was equivalent to establishing how it had happened. Asking them for evidence usually aroused annoyance and sometimes, if persisted in, hostility.


As an example, consider the view that life arose by chemical misadventure. By this they mean, I think, that they cannot imagine how else it might have come about. (Neither can I. Does one accept a poor explanation because unable to think of a good one?) This accidental-life theory, being somewhat plausible, is therefore accepted without the usual standards of science, such as reproducibility or rigorous demonstration of mathematical feasibility. Putting it otherwise, evolutionists are too attached to their ideas to be able to question them.


Or to notice that others do question, and with reason. They defend furiously the evolution of life in earth’s seas as the most certain of certainties. Yet in the November, 2005 Scientific American, an article argues that life may have begun elsewhere, perhaps on Mars, and arrived here on meteorites. May have, perhaps, might. Somewhere, somewhere else, anywhere. Onward into the fog.


Consequently, discussion often relies on vague and murky assertion, or ignores obvious questions. Starlings are said to have evolved to be the color of dirt so that hawks can’t see them to eat them. This is plausible and, I suspect, true. But guacamayos and cockatoos are gaudy enough to be seen from low-earth orbit. Is there a contradiction here? No, say evolutionists. Guacamayos are gaudy so they can find each other to mate. Always there is the pat explanation. But starlings seem to mate with great success, though invisible. If you have heard a guacamayo shriek, you can hardly doubt that another one could easily find it. Enthusiasts of evolution then told me that guacamayos were at the top of their food chain, and didn’t have predators. Or else that the predators were colorblind.


On and on it goes. On any coral reef, a scuba diver can see, or rather not see, phenomenally good camouflage in creatures such as octopuses, said to prevent their being eaten. It does. But many fish are garishly colored. What is the advantage?


Second, evolution seemed more a metaphysics or ideology than a science. The sciences, as I knew them, gave clear answers. Evolution involved intense faith in fuzzy principles. You demonstrated chemistry, but believed evolution. If you have ever debated a Marxist, or a serious liberal or conservative, or a feminist or Christian, you will have noticed that, although they can be exceedingly bright and well informed, they display a maddening evasiveness. You never get a straight answer if it is one they do not want to give. Crucial premises are not firmly established. Fundamental assertions do not tie to observable reality. Invariably the Marxist (or evolutionist) assumes that a detailed knowledge of economic conditions in the reign of Nicholas II substitutes for being able to answer simple questions, such as why Marxism has never worked. This is the Fallacy of Irrelevant Knowledge. And of course almost anything can be made believable by considering only favorable evidence and interpreting hard.


Third, evolutionists are obsessed by Christianity and Creationism, with which they imagine themselves to be in mortal combat. This is peculiar to them. Note that other sciences, such as astronomy and geology, even archaeology, are equally threatened by the notion that the world was created in 4004 BC. Astronomers pay not the slightest attention to Creationist ideas. Nobody does—except evolutionists. We are dealing with competing religions—overarching explanations of origin and destiny. Thus the fury of their response to skepticism.


I found it pointless to tell them that I wasn’t a Creationist. They refused to believe it. If they had, they would have had to answer questions that they would rather avoid. Like any zealots, they cannot recognize their own zealotry. Thus their constant classification of skeptics as enemies (a word they often use)—of truth, of science, of Darwin, of progress.



The Lair of the Beast


I have been on several lists on the internet that deal with matters such as evolution, have written on the subject, and have discussed evolution with various of its adherents. These men (almost all of them are) have frequently been very bright indeed, often Ivy League professors, some of them with names you would recognize. They are not amateurs of evolution, or high-school principals in Kansas eager to prove their modernity. I asked them questions, such as whether we really know what the primeval seas consisted of, etc. I knew the answers; I wanted to see how serious proponents of evolutionary biology would respond to awkward questions.


It was like giving a bobcat a prostate exam. I got everything but answers. They told me I was a crank, implied over and over (again) that I was a Creationist, said that I was an enemy of science (someone who asks for evidence is an enemy of science). They said that I was trying to pull down modern biology (if you ask questions about an aspect of biology, you want to pull down biology). They told me I didn’t know anything (that’s why I was asking questions), and that I was a mere journalist (the validity of a question depends on its source rather than its content).


But they didn’t answer the questions. They ducked and dodged and evaded. After thirty years in journalism, I know ducking and dodging when I see it. It was like cross-examining hostile witnesses.


This is the behavior not of scientists, but of advocates, of True Believers. I used to think that science was about asking questions, not about defending things you didn’t really know. Religion, I thought, was the other way around. I guess I was wrong.


As to the charge routinely made that I know “absolutely nothing” of evolution or the biological sciences, or any sciences,, I will point out that most things can be grasped by the application of modest intelligence and obsessive-compulsive disorder. The apparent difficulty of most science consists more in forbidding terminology than in the simple ideas concealed therein. At risk of inciting tedium, I note that, thanks to a good university grounding and considerable reading, I can speak with familiarity of:


Prophase, metaphase, anaphase, telophase. Descemet’s membrane, ciliary body, suspensory ligaments, retinal pigmented epithelium (the eye being of evolutionary interest). Peptide pituitary hormones, vasopressin and oxytocin. Osteoclast, osteoblast. Nephrons, glomerulus, Loop of Henle. Axon, dendrite, sodium in-potassium-out depolarization, neurotransmitters, receptor sites. Rough and smooth endoplasmic reticula, Golgi apparatus, lipid bilayers, hydrophobic and hydrophilic tails, lysosomes, ribosomes, epitopes, m-RNA, t-RNA, transcription, translation. Restriction enzymes, DNA polymerase. The Breeder’s Equation, selection differential, pleiotrophy, epistasis, narrow heritability. Purines adenine and guanine and pyrimidines cytocine and thymine (well, uracil in RNA). Degeneracy of the codon alphabet. Nucleotides, nucleosides, adenosine triphosphate, indels, mitochondrial cristae, single-nucleotide polymorphisms, Shannon information versus specified information, polymerase chain reaction, restriction-fragment length polymorphism, electrophoresis. Luciferin, (and Luciferout?) luciferase, ATP. X chromosomal and mitochondrial DNA. Peptide bonds -COOH to NH 2, water molecule extruded. Socially important compounds like 2, 4, 6- trinitrotoluene, toluene being benzene with an -CH3 group, bond resonance in benzene, pH, the negative log of the hydronium ion content. Levo- and dextro- isomers. Alkanes, alkenes, alkynes, al gore. Cambrian, Ordovician, Silurian, Devonian, Carboniferous, Permian. Purported transitional forms: The Ichthyostegids of, if memory serves, Devonian sediments of eastern Greenland; Archaeopteryx, Bavaria 1861; coelacanth, Marjorie Latimer, sort of 1937 I think; and my favorite, Piltdown Man. The amniote egg. Saurischian and Ornithischian dinosaurs. Sauropods, pseudopods, copepods. Etc



A Preamble


The intent of this essay is not to debate with the ardent of evolutionism. To do so would be pointless. The problem is one of underlying set of mind, of why people believe and disbelieve things. The greatest intellectual divide is not between those who believe one thing and those who believe another, but between those who have an emotional need to believe something fervently and those who can say, “I don’t know.” The former group comprises those tedious Darwinists and Creationists who hurl imprecations at each other like fans of rival football teams. Each blockheadedly refuses to concede the slightest possibility that its doctrine might be other than infallible. To my mind they constitute the best evidence that we did not descend from monkeys, but have not yet ascended to them. Stupidity beyond a certain point is intractable.


I write here for those who can look at the world with curiosity and calm, divining what can be divined and conceding what cannot, without regarding themselves as members of warring tribes. To judge by the writing on evolution in the public prints, there may be as many as three of these.



On Arrogance


“The universe is not only queerer than we suppose, it is queerer than we can suppose.” J. B. S. Haldane


“Queer”: Exactly the right word, suggesting more the world of Alice in Wonderland than the crisp, clean-edged, perfectly ordered and causal world of physics. This paradigm holds that existence is like a vast crossword puzzle. Some parts we have filled in, others we have not, but by its nature the puzzle is solvable, and it is only a matter of time before we know everything. This is awfully optimistic.


Humans today are a puffed-up and overconfident species. We believe that we know everything, or shortly will. We have a sense of near-omniscience equaled only by that of teenagers. For do we not have smart phones and Mars landers and PET scans, and do we not all speak wisely of DNA? We are, if not gods, at least godlings on the way up. If you don’t believe this, just ask us.


It was not always so. A thousand years ago, mankind cast a small shadow on the earth and lived in a dark and mysterious world. Little was known, about anything. Gods of countless sorts walked the earth. Spirits inhabited sacred groves. Lightning, the moon, the stars were…what? We had no idea. This brought humility.


We now believe that nothing is or can be beyond our powers. A contemplative skeptic might advert to a few remaining details: We don’t know where we came from, why we are here, where “here” is, where we are going if anywhere, or what we ought to do. These are minor questions. We only think about them when we wake up at three a.m. and remember that we are not permanent. We are kidding ourselves.


When people become accustomed to things that make no sense, they begin to seem to. Though we no longer notice it as we peck at tablet computers and listen to droning lowbrow shows about the conquest of nature, we still live in a weird and inexplicable universe, an apparently unending emptiness speckled with sparks of hydrogen fire. It is wicked mysterious. More things in heaven and earth, indeed.


We are not as wise as we think. We are just smarter than anything else we know about. I reiterate Fred’s Principle: The smartest of a large number of hamsters is still a hamster.



Evolution in the Grand Scheme of Things


The Theory of Evolution is not just about biological evolution. It is part of a grand unified theory that seeks to explain everything (except things that it can’t explain, which it ignores). It runs briefly as follows: First came the Big Bang. Subatomic particles flew in all directions, coalesced into atoms and into molecules and stars. Planets formed, then oceans, and then life came about by chemical inadvertence. Evolution produced trilobites, dinosaurs, mammals, and us. In the popular version, though not in the scientific, evolution produces ongoing betterment.


It is not particularly plausible. As someone said, evolution writ large is the belief that a large cloud of hydrogen will eventually turn into Manhattan. But, like a religion, it provides an overarching explanation of origins–the Big Bang–and destiny–we are getting better and better–and gives us a sense of understanding the world.


The theory is thus very much an expression of the need for certainty. Note that while in the Scopes Monkey Trial of 1925, Christian fundamentalists tried to outlaw Darwin, today evolutionists appeal to the courts to outlaw mention of Creation in the schools. This is not rational. Can anyone believe that describing Creation in high schools will deter students from studying biochemistry, and turn them into intellectual loin-cloth wearers burning textbooks?


Evolution is crucially important for biologists. Without Darwin, biology would become a collection of anecdotes, observations, and horrors, with no explanatory structure, and the living world a realm of utterly inexplicable and often weird and even frightening creatures.



Face to face with a hornet. Without the Theory we would have to ask who or what could make such a nightmare, where it could possibly have come from and why. If honest, we would answer, “We don’t know.”

Face to face with a hornet. Without the Theory we would have to ask who or what could make such a nightmare, where it could possibly have come from and why. If honest, we would answer, “We don’t know.”



Interestingly, atheism has to be part of the evolutionist’s mental equipment since if any sort of god exists, or if there is life after death, or anything beyond the laws of physics, then these things might influence existence in a way outside of physics–and this cannot be allowed.


Before going further, let us look at some of the questions ignored by evolutionism.


In Evolution Writ Large nothing exists but physics. The Big Bang was physics, chemistry is the physics of the interactions of atoms, biochemistry a subset of chemistry and therefore also physics. Everything that happens in a cell is physics (to include biochemistry). Everything that happens in a living body, from movement to thought, is physics. Mutations are physical events. The behavior of DNA follows the laws of physics.


Note that biological evolution is always regarded as an indivisible entity, yet in fact it consists of several distinct components that are logically separable. First, that life came about accidentally in the ancient seas (highly shaky and certainly not demonstrated). Second, that evolution occurred (as within limits can be shown). Third, that natural selection drove evolution (demonstrable in some cases, plausible in a great many, and highly unlikely in yet others). Fourth, that random mutations drive natural selection (very shaky, but crucial to evolutionism). Fifth, that nothing else drives it.


The unwillingness to recognize that these are separable leads to a tendency to believe that when one of them can be demonstrated–natural selection, say–it is regarded as confirmation of the whole edifice. It isn’t.


.


Eyeing the Argument from Time


A matter that needs to be gotten out of the way before continuing is the insistence that, given billions of years–more accurately, about four billion–life had to from just because of all that time. This is by no means clear. In questions of the probability of complex events, time can mean surprisingly little. Consider the assertion famously made by James Jeans, often cited in connection with evolution, that a monkey typing randomly at a keyboard would eventually write all the books in the British Museum. This sounds plausible and, in a purely mathematical sense, is true. What are the odds?


Consider a fair-sized book of 200,000 words that, by newspaper average, would contain about a million letters. To make it easy on the monkey, we will ignore upper case and punctuation and let him work with an alphabet of 26 letters. What are his prospects of getting the book in a given string of a million letters?


The chance of getting the first letter correctly is 1/26 times the chance of getting the second letter, 1/26, and so on, making the chance of getting the entire book 1/261,000,000. Since 26 equals 10log 26, (log 26 being about 1.41) the chance of getting the entire book is 1 in 10log 26 x 1000,000 or about 101,400,000. Innocent looking numbers like this are remarkably intractable. For example, a billion billion monkeys (more monkeys than Iwant) typing a billion billion characters a second for a billion billion times the estimated age of the universe (1018 seconds ) would have essentially zero chance of getting the book.


To give our monkey a fighting chance, let’s ask whether he would get even the title of a book, for example On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life , which Microsoft Word tells me contains 119 characters. The monkey’s chance of getting the title in a given string of 119 is one in 10119 x x 1.41 or 10168 Thus our billion billion monkey at a billion billion characters a second for the life of the universe is essentially zero.


Is the chance of accidentally forming a living Crittter a similar problem? We don’t know, especially since evolutionists cannot tell us what the First Critter was. But it is their responsibility to tell us, first, what of what complexity formed and, second, why the odds are not astronomically against it. The point to take away is that the invocation of long periods of time can mean little when speaking of the probability of complex yet unspecified events.


A Few Early Questions


(1) Life was said to have begun by chemical inadvertence in the early seas. Did we, I wondered, really know of what those early seas consisted? Know, not suspect, hope, theorize, divine, speculate, or really, really wish. Bear in mind that chemical reactions depend crucially on molarity, pH, temperature, half-life of intermediates, and so on.


The answer is, “no.” We have no dried residue, no remaining pools, and the science of planetogenesis isn’t nearly good enough to provide a quantitative analysis.


2) Do we know what conditions would be necessary for a cell to come about? No, we don’t.


(3) Has the creation of a living cell, or even a metabolizing, reproducing molecule, been replicated in the laboratory? No, it has not. Here the evolutionist will say, “But, Fred, how can you repeat in the laboratory something that took millions and millions of years and billions and billions of gallons of sea water?” You can’t, but am I to believe it happened on the grounds that it can’t be proved?


(4) Could it be shown to be mathematically probable that a cell would form, given any soup whatever? No, it couldn’t, and can’t. (At least not without cooking the assumptions.)


(5) Have biochemists designed a replicating chemical entity that plausibly might have evolved into organisms such as we now have? No.


6) This next I ask, knowing that no answer is possible, to make a point: The more complex we postulate the First Critter to have been, the less likely that it would form accidentally. The less complex, the harder to explain why such a Critter has not been designed in the laboratory. With every passing year, the difficulty grows.


In sum: If we don’t know what conditions existed, or what conditions would be necessary, and can’t reproduce the event in the laboratory, and can’t show it to be statistically probable, and can’t construct something that might have evolved—why are we so very sure that it happened? Would you hang a man on such evidence?


A Surfeit of Soups


To see the desperation of the search for plausible beginnings of life, look at this list, from the Wikipedia, of the wildly differing hypotheses, guesses, theories, and lunges, none of which have worked out. Does it give you a sense that evolutionists know what they are talking about?



One hypothesis, as mentioned before, is that life swooped in from outer space on carbonaceous chondrites, or began on Mars (where it conspicuously has not been discovered by a platoon of itinerant Mars landers) and drifted to the earth. That is, life began where apparently there has never been life. The flexibility of evolutionary thinking is greatly to be admired.


Here a point worth making briefly: The press often excitedly reports that “organic compounds” have been found on meteorites, or comets, or interstellar space, or in bottles of chemicals through which an electric spark has been passed. The unfortunate name “organic” suggests origins in living creatures, or the likelihood of turning shortly into living creatures. Actually, “organic chemistry” is, roughly, the chemistry of carbon chains. No living origins nor living intentions are implied. DDT is an organic compound, as is 2,4,6-trinitrotoluene, TNT.



Impossibility Theory and Common Sense, If Any


If you look at evolution from other than the perspective of an ideological warrior who believes that he is saving the world from the claws of primitive Christians in North Carolina, difficulties arise. Chief among these is the sheer complexity of things. Living organisms are just too complicated to have come about by accident. This, it seems to me, is apparent to, though not provable by, anyone with an open mind.


Everywhere in the living world one sees intricacy wrapped in intricacy wrapped in intricacy. At some point the sane have to say, “This didn’t just happen. Something is going on that I don’t understand.” But an evolutionist cannot say that there is anything he can’t understand, only that there are things he doesn’t yet understand.


Read a textbook of embryology. You start with a barely-visible zygote which, (we are told) guided by nothing but the laws of chemistry, unerringly reacts with ambient chemicals to build, over nine months, an incomprehensibly complex thing we call “a baby.” Cells migrate here, migrate there, modify themselves or are modified to form multitudinous organs, each of them phenomenally complex, all of this happening chemically and flawlessly on autopilot. We are accustomed to this, and so think it makes sense. The usual always seems reasonable. I don’t think it is. It simply isn’t possible, being a wild frontal assault on Murphy’s Law.


Therefore babies do not exist. Quod erat demonstrandum. Unless Something Else is involved. I do not know what.


Complexity upon complexity. In virtually invisible cells you find endoplasmic reticula, Golgi apparatus, ribosomes, nuclear and messenger and transfer RNA, lysosomes, countless enzymes, complex mechanisms for transcribing and translating DNA, itself a complex and still-mysterious repository of information. Somehow this is all packed into almost nowhere. That this just sort of, well, you know, happened is too much to believe. It began being believed when almost nothing was known about the complexity of cellular biology, after which, being by then a sacred text, it could not be questioned. And cannot.


The foregoing is only the beginning of complexity. The many organs formed effortlessly in utero are as bafflingly elaborate as cells themselves. Consider (a simplified description of) the parts of the eye: The globe of three layers, sclera, choroid, and retina. Cornea of six layers, epithelium, Bowman’s membrane, substantia propria, Dua’s layer, Descemet’s membrane, endothelium. Retina of ten layers. Lens consisting of anterior and posterior capsule and contained proteinaceous goop. The lens is held by delicate suspensory ligaments inside the ciliary body, a muscular doughnut that changes the shape of lens so as to focus. An iris of radial and circumferential fibers enervated competitively by the sympathetic and parasympathetic nervous systems in opposition. A pump to circulate the aqueous humor. On and on and on. And equally on and on for all the other organs, which last for seventy years, repairing themselves when damaged.



Suspensory ligaments attaching the lens of the eye to the ciliary body. They form perfectly, all by themselves, and pull on the lens to changes it curvature in focusing.

Suspensory ligaments attaching the lens of the eye to the ciliary body. They form perfectly, all by themselves, and pull on the lens to changes it curvature in focusing.



I can’t prove that this didn’t come about accidentally. Neither can I believe it.



The Details (Wherein Lurketh the Devil)


At every level, complexity mounts. The following simplified description of the biochemical functioning of the retina is from Darwin’s Black Box: The Biochemical Challenge to Evolution by Michael Behe. The book, which I recommend, is accessible to the intelligent laymen, for whom it is written. The author includes the following technoglop to give a flavor of what is involved in vision. The sensible reader will skip through most of it.


When light first strikes the retina a photon interacts with a molecule called 11-cis-retinal, which rearranges within picoseconds to trans-retinal. (A picosecond is about the time it takes light to travel the breadth of a single human hair.) The change in the shape of the retinal molecule forces a change in the shape of the protein, rhodopsin, to which the retinal is tightly bound. The protein’s metamorphosis alters its behavior. Now called metarhodopsin II, the protein sticks to another protein, called transducin. Before bumping into metarhodopsin II, transducin had tightly bound a small molecule called GDP. But when transducin interacts with metarhodopsin II, the GDP falls off, and a molecule called GTP binds to transducin. (GTP is closely related to, but critically different from, GDP.)


GTP-transducin-metarhodopsin II now binds to a protein called phosphodiesterase, located in the inner membrane of the cell. When attached to metarhodopsin II and its entourage, the phosphodiesterase acquires the chemical ability to “cut” a molecule called cGMP (a chemical relative of both GDP and GTP). Initially there are a lot of cGMP molecules in the cell, but the phosphodiesterase lowers its concentration, just as a pulled plug lowers the water level in a bathtub. Another membrane protein that binds cGMP is called an ion channel. It acts as a gateway that regulates the number of sodium ions in the cell. Normally the ion channel allows sodium ions to flow into the cell, while a separate protein actively pumps them out again. The dual action of the ion channel and pump keeps the level of sodium ions in the cell within a narrow range. When the amount of cGMP is reduced because of cleavage by the phosphodiesterase, the ion channel closes, causing the cellular concentration of positively charged sodium ions to be reduced. This causes an imbalance of charge across the cell membrane that, finally, causes a current to be transmitted down the optic nerve to the brain. The result, when interpreted by the brain, is vision. If the reactions mentioned above were the only ones that operated in the cell, the supply of 11-cis-retinal, cGMP, and sodium ions would quickly be depleted. Something has to turn off the proteins that were turned on and restore the cell to its original state. Several mechanisms do this. First, in the dark the ion channel (in addition to sodium ions) also lets calcium ions into the cell. The calcium is pumped back out by a different protein so that a constant calcium concentration is maintained. When cGMP levels fall, shutting down the ion channel, calcium ion concentration decreases, too. The posphodiesterase enzyme, which destroys cGMP, slows down at lower calcium concentration. Second, a protein called guanylate cyclase begins to resynthesize cGMP when calcium levels start to fall. Third, while all of this is going on, metarhodopsin II is chemically modified by an enzyme called rhodopsin kinase. The modified rhodopsin then binds to a protein known as arrestin, which prevents the rhodopsin from activating more transducin. So the cell contains mechanisms to limit the amplified signal started by a single photon. Trans-retinal eventually falls off of rhodopsin and must be reconverted to 11-cis-retinal and again bound by rhodopsin to get back to the starting point for another visual cycle. To accomplish this, trans-retinal is first chemically modified by an enzyme to trans-retinol— a form containing two more hydrogen atoms. A second enzyme then converts the molecule to 11-cis-retinol. Finally, a third enzyme removes the previously added hydrogen atoms to form 11-cis-retinal, a cycle is complete.


I can perhaps imagine an Airbus 380 assembling itself. I cannot begin to imagine the foregoing evolving on its own. Or working flawlessly for more than a millisecond.



Layers of Impossibility


If in an unexplored region of the Amazon Basin you find a grass hut next to a dugout canoe, you may not know who made them, but you suppose that someone must have. This is the theory of Intelligent Design. When you find in nature systems of unfathomable complexity that nonetheless work flawlessly, it is not unreasonable to suspect that they were designed, and perhaps sustained, by someone, or something. I have no idea who or what or why.


Equally mysterious—equally impossible, I would say—is how biological systems can function at all, no matter how they came into being. The workings of every detail of, say, a human body can indeed be explained mechanistically, in terms of chemistry and physics, and this is the result that comes out of experimentation. In the laboratory you can show, or seem to show, that enzyme A binds to enzyme B, activating enzyme C and allowing enzyme D to do whatever enzyme D does. (You can show that a massive federal program makes sense in detail. But does it work in practice?)


But to believe that 180 pounds of infinitely complex, interacting chemical reactions (me, for example) can go on for seventy years without utter collapse requires powers of belief beyond the wildest imaginings of religious faith. The whole is less possible than the sum of its parts. Something is going on that we do not understand.


Domain Bloat


Consider a plane geometer. He deals with a limited domain of planes, lines, points, and angles, and nothing else. These produce elegant mathematics and useful results. He cannot deal with volumes, momentum, or tailgate parties, because these cannot be derived from the elements of his domain. They are beyond the scope of his subject.



The domain of the sciences is physics, its elements being space, time, matter, and energy, however hyphenated. Everything in science ultimately reduces to physics. Evolution is the physics of interactions of biochemical systems with their physical environment over time, and thus also is a subset of physics. Nothing can happen in evolution that does not derive from and follow the laws of physics.


Just as a baseball game cannot be derived from or be explained by plane geometry, which does not contain matter, energy, time, or space of three dimensions, neither can such things as thought, consciousness, morality, volition, or exaltation be explained by physics. The desire to strangle your mother-in-law does not fall out of the equations of motion. When evolutionists try to explain behavior such as altruism in terms of physics (which is what they are doing, though most of them don’t know it) they are like a plane geometer trying to explain a cheeseburger in terms of lines and angles in a plane. It can’t be done. The trouble with the sciences (though not with all scientists) is exactly this, that they try to explain within the domain of physics things that are outside of its purview.



Studying Us: Explaining the Explainers


The sciences get into particular difficulties when they try to explain the explainer, which is to say us. Consider the brain which, we are told, is just an electrochemical machine. Everything that happens in the brain, we are told, follows the laws of chemistry and physics.


And this certainly seems to be the case. For example, neurotransmitters diffuse across the synaptic gap: pure chemistry and physics. They bind to receptors on the other side: pure chemistry and physics. Enzymes like acetylcholinesterase clear the residue from the gap: pure chemistry and physics. The resulting nervous impulse sails down the distal fiber as it depolarizes, sodium in, potassium out: pure chemistry and physics. It is as mechanical as a 1901 typewriter.


Which means that the brain cannot, and thus we cannot, make choices. Physical systems cannot choose what to do. A bowling ball dropped from the top of the Washington Monument cannot decide to fall up, or sideways, instead of down, nor choose how fast to fall, nor how far. Similarly, the end point of a physical system is determined by starting conditions. A molecule of a neurotransmitter binds ineluctably to a receptor because of stereochemistry and charge. It cannot not bind.


It follows then that we cannot choose one action over another. Our thoughts are predetermined by the physicochemical states of our brains. We think what we think because it is physically impossible to think anything else. Thus we cannot think at all. QED. Tell me why this isn’t true.


Unless Something Else is going on. I don’t know what.


Paradox is a consequence of domain bloat. Descartes famously said, “Cogito ergo sum.” Ambrose Bierce less famously but more insightfully said, “Cogito cogito, ergo cogito sum. Cogito.”



Survival of the Survivors


Most people think that, “fitness” meaning “suitability for a purpose,” survival of the fittest means that the smarter, stronger, and faster survive and produce more offspring than the stupid, weak, and slow. It does not. The study of such things is called population genetics and, as a professor of it says, “In population genetics, fitness means the rate of successful reproduction, nothing else.” That is, fitness does not promote survival, but is survival. The circularity is well known: Why do they survive? Because they are fit. How do you know that they are fit? Because they survive.


If fitness means the rate of successful reproduction, we encounter the interesting conclusion that a woman with a genetic IQ of sixty and twelve genetically retarded children by forty-five drive-by fathers is more fit than a Harvard math professor who runs Triathlons but has two children.


If instead of “fitness” with its almost inescapable overtones of “superiority,” we used “reproduction rate,” clarity would follow. Perish forbid.


A staple of evolutionism is that evolution works to maximize the number of offspring, thus passing on successful genes. This is plausible but, in the case of us, counter to observation (but why let facts debilitate a perfectly good theory?) The populations of advanced countries, all of which could easily support larger numbers of people, are actually falling. For example, Japan, Spain, Italy, Germany, and Russia. In Mexico, as the standard of living rises, the birth rate falls sharply. How one passes on one’s genes by not passing them on is a mystery of population genetics.


Meanwhile the populations of black Africa, the civilizational equivalents of the unwed mother with an IQ of 60, grow rapidly. Which is to say that in advanced countries, reproduction of individuals is inversely proportional to circumstances favoring it–intelligence health, wealth, and education. Among nations, as noted, a similar phenomenon exists.


When this is pointed out, evolutionists hem and haw (or should I say hem and her?), sometimes say that evolution no longer applies to humans, (though they simultaneously insist that evolution is ongoing and rapid) and then often blame falling populations on contraception, as if this were an outside force, like drought or a new predator. But saying that contraception causes falling populations ls like saying that spears cause hunting. People wanted to eat, so they invented spears. They wanted not to have children, so they invented contraception. Not passing on one’s genes is now almost a preoccupation.


Another peculiarity is populational altruism. Countries with declining populations intentionally import inferior but more-fecund genetic groups. Sweden for example imports black Africans. In the United States, the white population feeds and clothes huge numbers of genetically utterly distinct blacks, and actually seems to be growing them. The Darwinian advantage of this is elusive.



Current Human Evolution


Evolutionists insist that human evolution continues today at a rapid pace. There is nothing illogical in this to the extent that it is a matter of selective breeding and that evolution is defined as a change in phenotype. In some cases it can be shown to happen.


Consider for example cognitive stratification, in which very smart people tend to go to Ivy universities, marry each other, and produce smart children. The children will tend to revert toward the mean but, as they interbreed, the mean will rise. Thus a fairly distinct subpopulation comes about.


While such things certainly can occur, problems arise in the evolutionists’ casual attribution of traits to evolutionary change. The first is that “selective pressure” usually cannot be measured and cannot be correlated with its purported results. Traits are regularly attributed to genes that have not been demonstrated acted upon by selective pressures that cannot be quantified to produce results that cannot be correlated with the pressures. The second is that results often seem to be inversely related to what would seem to be obvious selective advantage.


Often it seems that evolution is driven less by selective pressure than by the absence of selective pressure. Before the advent of modern medicine, people with inferior genetic endowments– low resistance to disease, or possession of genetic diseases such as diabetes, serious retardation, etc.–tended to die before reproducing. This selective pressure served to keep those diseases at a low level in the population. Today the defective are kept alive to reproductive age, have children, and thus rapidly increase the prevalence of those diseases in the population.


There is the curious fact that traits of very little obvious value flourish, while those seemingly important do not. Consider the epicanthic fold, which makes the Japanese and Chinese “slant-eyed.” Evolutionists I have read assert alternately that the fold serves to conserve energy or to protect the eye against icy winds, thus furthering survival. Characteristically, they cite no studies demonstrating that the fold does either of these things: In evolution, plausibility substitutes for evidence. The fold has become universal in the populations, suggesting that powerful selective pressures must have been responsible.


But what pressures? Do we really believe that the fold provides enough protection to the eye, if it provides any at all, to result in its possessor having more children than others? Do foldless Vikings go blind? Where is the evolutionary noise level? At what point is the selective advantage, if any, so slight as to make no difference?


Which brings us to a baffling question. Why does a trait with very little or no reproductive value–the fold–become universal, when traits such as high intelligence, great physical prowess, astonishing eyesight, and so on not become even common? The genes for all of these already exist in the population without the need for mutations.


If traits that conduce to reproduction become evermore prevalent, it follows that traits that do not become prevalent do not conduce to reproduction. These would seem to include the aforementioned–intelligence, strength, and so on–as these seem no more common now than in classical antiquity.


If human evolution continues today at a rapid pace as evolutionists say (and indeed it may) it follows that selective pressures must be fairly intense. It is reasonable to ask, what pressures to what end? Cognitive stratification–the self-selection of people with IQs of perhaps 130 and up–qualifies and may lead to a blurry-edged yet distinct subpopulation.


Yet pressures would otherwise seem to be low now. In modern human populations, in which almost no one dies in infancy, almost everyone marries, and almost everyone has the same small number of children, the number of offspring is not determined by life-or-death selection. The football captain gets the prom queen, but the class nerd gets the nerdette and can have as many children. Almost everyone lives past reproductive age, so there is little culling effect as the slow are eaten by wolves. The genetically sickly are kept alive and allowed to reproduce by medicine. Consequently it is hard to image Darwinian selection occurring with much ferocity.


Nor can I see evidence for more than minor changes in the 2500 years since Fifth-Century Athens. Statues by Phidias and Praxiteles and later Roman copies show people exactly like us. It is impossible to give IQ tests to the long dead, but Plato and Archimedes seem very like the best minds of today, and the writings of such as Xenophon are indistinguishable in complexity, clarity, and quality of mind from good modern writers. Nothing suggests that the ancients were any less athletic, bellicose, or agile than we are, or that they had senses any less acute. The 2500 years of rapid evolution appear to have produce a net of zero.



A Thing is Not Possible Merely Because It Happens: The Tarantula Hawk


It is easy to imagine how a complex system, once in existence, can, within limits, evolve under the influence of selective pressures. Any dog breeder can demonstrate this. Or think of the path from Eohippus to Clydesdale. The difficulty lies in knowing how the system came about in the first place.


Consider the Tarantula Hawk, a gigantic wasp that begins life as an egg inside a paralyzed and buried tarantula, where its mother put it. This may seem unmotherly, but there is no accounting for taste. The egg hatches. The l

Print